
Pointers 5-1

Pointers

5

Indirection and addresses

5
Pointers and Object References

Pointers, Addresses, and Variables

Indirection Operation

Addresses and Memory Map

Addresses and Variables

Addresses and Allocated Memory

Addresses and Global Memory

Addresses as Pointers

Pointers 5-2

Copyright 2006, Richard Petersen
All rights reserved.

5. Pointers

Any object defined in a program can be referenced through its address. Your computer's memory is
organized into bytes, each with its own address. When you declare a variable, a set of bytes is set aside
for its use. This is where a variable's value will be stored. The beginning address of these bytes is often
referred to as the address of that variable. Normally you will only need to use a variable's name to
reference the value held in this memory. However, it is also possible to use the address of this memory,
instead of the variable name, to reference that value. Using the address of a variable to reference its
value is a pointer operation, and it is usually carried out by a pointer variable.
 With a pointer variable, you can reference any object defined in a program. A pointer is a
variable that has as its value the address of an object. The address held by a pointer can be used to
reference a particular object. In this sense, a pointer can be said to point to an object.
 A pointer is often used to reference a variable. In such a case, a pointer will have as its value the
address of another variable. Since the pointer is a variable itself, a pointer can be described as a variable
that holds the address of another variable. This chapter will cover pointers and addresses and how they
are used to reference variables. The first part of the chapter will focus on how pointers are used. Then
a detailed examination of how pointers operate using addresses will follow.
 It is easier to describe what a pointer is used for than to explain how a pointer works. The use of
a pointer can be conceived of in a very straightforward, task-oriented way. However, whenever you use
pointers, errors can arise easily. Often, correction of pointer errors requires an understanding of how a
pointer operates. This, in turn, requires a technical understanding of how objects are defined and
referenced in memory. An understanding of how objects are arranged in memory helps us to
understand how addresses can be used to reference those objects.
 There are situations in which it makes sense to think of the address itself as a pointer. This is
discussed at the end of the chapter. For the purposes of this chapter, the term pointer will refer to a
pointer variable. An address will be referred to simply as an address.

Pointers and Object References

A pointer is used as a referencing mechanism. A pointer provides a way to reference an object using
that object's address. There are usually three elements involved in this referencing process: a pointer
variable, an address, and another variable (see Figure 5.1). The pointer variable holds the address of the
other variable. A special operation, called an indirection operation, will use this address to actually
reference the other variable.

numptr

800

800
num

int num;
int *numptr;

Figure 5.1. Pointer reference and declaration.

Pointers 5-3

 A pointer variable is a variable itself. It is declared with a name and a type. Its type consists of
two elements: the pointer type specifier-an asterisk-and a data type. The pointer specifier indicates that
the variable is a pointer. The data type is the type of object the pointer variable points to, the type of
variable it will be used to reference.
 The value that a pointer variable holds is an address. An address is different from other kinds of
values in that it is used to reference other objects you have declared in your program. Normally, a value
is used to reference some real-world value. An integer value is an integer number that can be used in
arithmetic calculations. A character value is a character symbol, such as an alphabetic character. An
address, however, is the address of a program object. A pointer to an integer holds an address of an
integer variable. Figure 5.1 illustrates a pointer declaration and its reference of a variable.
 For a pointer to reference another variable, it must first be assigned that variable's address. The
address of a variable is obtained with the address operation. The address operator is an ampersand, &.
When applied to a variable, this operation will result in the address of that variable. This address can
then be assigned to a pointer variable. Once the pointer variable has the address of another variable, it
can be said to point to that variable.
 An indirection operation on the pointer variable will actually reference the pointed-to variable.
The indirection operation makes use of both the address held by the pointer and the pointer's data type.
The address is used to locate the variable. The data type is used to determine the variable's type. For
example, indirection on a pointer to an integer will reference an integer variable, whereas indirection on
a pointer to a float will reference a floating-point variable. Figure 5.2 displays an address operation
and indirection.

num

numptr
800

300 800

7

numptr = & num; *numptr = 5;

int num = 7;
int *numptr; num

numptr

800

300 800

5

Figure 5.2. Address operation and indirection.

 In the numadd.c program in Listing 5.1, all these elements come into play. An address
operation is used to obtain an address of a variable that is then assigned to a pointer. An indirection on
the pointer then references that variable. The pointer variable numptr is declared as a pointer to an
integer. numptr is then assigned the address of the variable num. At this point, numptr can be said to
point to num. An indirection operation on numptr references the variable num, assigning 5 to num. In
the printf statement, the value of num is printed out using both the variable num and its reference
through an indirection operation on numptr. Then the address of num and the contents of numptr are
printed out. Notice that they are the same. numptr holds the address of num.

Pointers 5-4

LLIISSTTIINNGG 55..11
numadd.c

#include <stdio.h>

int main(void)
 {
 int num;
 int *numptr;

 numptr = #
 *numptr = 5;

 printf("Num = %d, Indirection on Numptr = %d \n", num, *numptr);
 printf("Address of Num = %p, Address held in Numptr = %p \n", &num, numptr);
 return 0;
 }

Output of Listing 5.1:

 Num = 5, Indirection on Numptr = 5
 Address of Num = 800, Address held in Numptr = 800

Pointers, Addresses, and Variables

To understand the relationship between pointers and variables, the implementation of each needs to be
closely examined. Pointers are declared differently than other variables. A pointer's value and type are
designed to provide information with which to reference other variables. An ordinary variable simply
represents data values, such as integers or characters. A pointer can be said to represent the variables
themselves.
 Type, address, and memory are the three basic elements used to define a variable. A variable is
defined and referenced in memory. When a variable is defined, a set of bytes is allocated for its use.
The beginning address of those bytes is then associated with the variable's name. Each time the
variable's name is used in a statement, the variable's address is used to locate those bytes. These bytes
will hold a variable's value. The variable's declared data type is used to interpret that value. An integer
variable will hold in its bytes an integer value. Figure 5.3 illustrates a variable's address and memory.
 Each time a variable is used, the variable's address is used to locate its memory and its type is
used to interpret that memory. An integer variable will use its address to locate its memory and
interpret that memory as an integer value. This location and interpretation process references a variable.
Address and type are the two pieces of information that a variable needs to reference its memory.

Pointers 5-5

801800

&num
addresses

&cost

802 803 804 805 806
5 32.70

address operations address of num is 800 and
the address of cost is 802

memory bytes

num cost

Figure 5.3. Addresses and variables.

 In the next example, the integer variable num is assigned the integer value 7. The integer value
held by the variable num is located at a specific address in memory. The integer value itself exists only
as a series of binary bits. The int type in the num variable's declaration indicates that this series of bits
is to be interpreted as an integer value.

 int num;
 num = 7;

 A pointer has the same two pieces of information that a variable uses to reference its memory:
an address and a type. A pointer variable is declared with a pointer type specifier and a data type. The
pointer type is represented by an asterisk, *. The asterisk alone does not declare a pointer variable. The
asterisk indicates that the value of this variable is an address. This address will be used to locate a
variable. The data type placed before the asterisk in the pointer declaration is the type of the variable
pointed to by the pointer. The data type is used to reference the memory at that address as a specific
kind of variable. In the next example, the asterisk, *, indicates that numptr is a pointer variable. The
data type, int, is the type of variable this pointer can reference, an integer.

 int *numptr;

 How, then, does a pointer obtain the address of a variable? First, the address operation has to be
applied to the variable. The address operation is literally a unary expression consisting of an address
operator and a single operand. The address operator is the ampersand, &, and the operand can be any
variable. You simply place the ampersand next to the variable. The result of the address operation is
the address of the variable. You can then use an assignment operation to assign this address to a pointer
variable.
 In the next example, the address of num is obtained by the address operation and then assigned
to the pointer numptr. In the costadd.c program in Listing 5.2, the address of the cost variable is
assigned to the pointer costptr. The address held by the costptr pointer, as well as the address
resulting from an address operation on the cost variable, is printed out. Both addresses are the same.

 int num;
 int *numptr;

 numptr = #

LLIISSTTIINNGG 55..22
costadd.c

#include <stdio.h>

Pointers 5-6

int main(void)
 {
 int num = 5;
 float cost = 32.70;
 int *numptr;
 float * costptr;

 numptr = #
 costptr = &cost;

 printf("Address of Num = %p \n", &num);
 printf("Address in Numptr = %p \n", numptr);
 printf("Address of Cost = %p \n",&cost);
 printf("Address in Costptr = %p \n", costptr);
 return 0;
 }

Output of Listing 5.2:

 Address of Num = 800,
 Address in Numptr = 800
 Address of Cost = 802,
 Address in Costptr = 802

 A pointer variable has, as its value, an address, which is simply a number used to reference a
location in memory. When an address is used as a pointer value, it is always treated as an address of an
object. In C, an address is always used as an address of- an address of a type of object.
 An address is similar to an unsigned integer. In C, a pointer can be easily converted to an integer,
and vice versa. However, in C, an address is never used as an unsigned integer. It is instead always
used as a pointer value: as the contents of a pointer variable, as the result of a pointer expression, or as a
constant cast to a pointer value. In this respect, the type of an address is that of a pointer to an object.
You can think of an address as not simply an address, but as an address of some type of object.
 The change of a pointer variable's value changes the address, but it does not change the data type.
In the next example, the pointer variable numptr can be assigned many different addresses. However,
those addresses will always be considered to be addresses of integers. In the same way, costptr may
have many different addresses, but those addresses will always be addresses of floats. In this sense,
one can speak of different types of pointer variables. A pointer variable is literally a variable of type
pointer to a type of object. The data type restricts that pointer variable to addresses of that type of object.
costptr can only be assigned addresses of floats; numptr can only be assigned addresses of
integers.

 int * numptr; int address
 float * costptr; float address

 Two pointer variables can be compared only if their types match. However, as with most
operations, you can use a cast expression to generate the same value with a different type. You can
apply a cast operation to a pointer that will result in an address of a different type of object from that of
the pointer. In the next example, the address held by costptr is changed in a cast operation from an
address of a float to an address of an int. The address of an int held by numptr can now be

Pointers 5-7

compared to the address of an int generated by the (int*) cast operation on costptr. costptr is
still a pointer to a float, but the cast operation has taken its value generated a different type of pointer.

 int *numptr, *iptr;
 float *costptr;

 if (numptr == iptr)
 printf ("they are equal\n");

 if (numptr == (int *) costptr)
 printf ("they are equal\n");

 Printing out the contents of a pointer variable prints out the address of the variable being
referenced by this pointer. The next examples show the different ways you can output addresses. For
the sake of these examples, the address held by numptr is 534. If the contents of numptr are printed
out, the output consists of the number 534. This is the address, 534. The output function printf, with
its conversion capabilities, is usually used to print out addresses. In C, the letter 'p' is a special
conversion specifier for pointer values, %p. L, l:%lu pointer conversion modifier;

printf("Value in numptr is address %p.",numptr);

 Value in numptr is address 534.

Indirection Operation

A pointer has the address and data type with which to locate and interpret memory. The actual location
and interpretation remain dormant until the address and data type are operated on explicitly. By itself, a
pointer is not capable of referencing that memory. You need to use a special operation that can take the
information in a pointer and perform the same location and interpretation tasks as a variable. This
special operation is called indirection, and it references memory as a variable would. The indirection
operation uses the address and its data type to locate and interpret memory.
 The indirection operator is an asterisk. The indirection operation uses the address in a pointer to
locate bytes in memory. However, the location part of indirection is only half the operation. The
indirection operation then makes explicit use of the pointer's data type to interpret the located memory
as a certain type of object. The location and interpretation, taken together, can be thought of as
referencing an object. An indirection operation on a pointer to an integer can be thought of as
referencing an integer variable. A direct reference using a variable name involves the same kind of
location and interpretation of memory as that performed by the indirection operation.
 In the next example, there is an indirection operation on the pointer variable numptr. numptr
is first assigned the address of num. For the sake of this example, the address of num is 534. numptr
holds the address 534 and has a data type of integer. The indirection operation locates that address and
interprets the memory at that address as an integer. The indirection operation can be thought of as
referencing the integer variable whose memory is located at address 534. Figure 5.4 illustrates the
indirection operation on a pointer variable.

int num = 7;
int *numptr = #
 printf("%d", *numptr);

Pointers 5-8

00000000 00000111
534 535 534

numptr *numptr

((int) 534)
*numptr

address and type
information reference integer at

address 534 with value 7

Figure 5.4. Indirection on a pointer to a variable.

 Indirection on a pointer to a variable references a variable. This means that you can use
indirection not only to interpret memory as some kind of value, but also to assign a value to that
memory. Just as you can change the contents of a variable, you can also change the contents of memory
referenced by a pointer.
 In the next example, the indirection operator works on the address in the pointer variable
numptr. The indirection operation takes the address in numptr (534) and references that memory as
an integer variable. The indirection is being used in an assignment expression, assigning the value 3 to
the memory at address 534, as Figure 5.5 shows. The indirection operation can be seen as just another
variable reference, subject to the same rules as any other variable reference. A variable reference used
as the left-hand operand in an assignment operation will assign the right-hand value to that variable. In
this case, the variable reference is carried out by an indirection on a pointer, not a variable name.

 int num;
 int *numptr = #

 *numptr = 3;

01100000 00000000
534 535534

3

3
Assigned Value numptr *numptr

Figure 5.5. Assignment and indirection on a pointer.

 In the next example, the indirection operation *numptr is operating just like the variable name
num. The assignment expression *numptr=3 assigns the value 3 to the memory at 534, just as the
assignment expression num=3 assigns the value 3 to the variable num. res=*numptr references the
value of the memory at 534 and assigns that value to the variable res. res=num references the value
of the variable num and assigns it to the variable res.

 int num, res;
 int *numptr = #

 num = 3;
 *numptr = 3;
 res = num;
 res = *numptr;

 You can use the indirection operation in any kind of expression in which a variable can be used.
Within an expression, both variable names and indirection operations can reference data. In the

Pointers 5-9

numind.c program in Listing 5.3, indirection operations are used in several different kinds of
expressions. An indirection on numptr is used in an arithmetic addition operation. Another indirection
is used in a relational expression, *numptr<5. Still another indirection is used in a multiplication
operation. All of these indirections use the same pointer variable, numptr. The address in numptr has
remained the same throughout the program. This means that all indirections reference the same
variable. As long as the address in the pointer variable remains the same, it is as if the same variable is
being referenced.

LLIISSTTIINNGG 55..33
numind.c

#include <stdio.h>

void main(void)
 {
 int num, res;
 int *numptr;

 numptr = #
 *numptr = 3;

 res = *numptr + num;
 if(*numptr < 5)
 res = num * *numptr;

 printf("num= %d,numptr=%p \n",num,numptr);
 printf("res = %d,\n", res);
 }

Output of Listing 5.3:

 num = 3, numptr = 800
 res = 9,

 Notice that in the multiplication operation, there are two uses of the asterisk. Placed next to the
pointer variable, the asterisk is an indirection operation. Placed between two integers, the asterisk is a
multiplication operation. The space between the two asterisks is crucial. Without it, the compiler will
interpret the two asterisks as two indirection operations.
 There are, then, two kinds of variable references: the variable name and the indirection
operation. In the case of pointer variables, the two must not be confused. When used with the
indirection operator, the pointer variable is the operand in an indirection operation. Without the
indirection operator, the pointer variable is like any other variable name. A pointer variable name by
itself simply references a pointer variable, the contents of which are an address, whereas when the
pointer variable name is used in an indirection operation, the data object at that address is referenced.
 In the first printf in the next example, the value of the memory referenced by the indirection
operation on numptr is printed out. The value of the memory at 534 is 3. In the second printf, only
the pointer variable name, numptr, is used. The pointer variable numptr is referenced and its value
printed out: the address 534.

Pointers 5-10

 printf("%d", *numptr);
 printf("%u", numptr);

 Output of printf statements:
 3
 534

 A pointer variable is a variable, and as such you can assign to it different addresses. You can
first assign one address to a pointer, and then use another assignment to replace it with another address.
In this way you can use the same pointer variable to reference different variables. Indirection operates
on the address held by a pointer. If the pointer variable is assigned a new address, the next indirection
will reference the variable at that new address. The referencing process relies on the address. When
indirection operations work on different addresses, they are, in effect, referencing different variables.
 In the countadd.c program in Listing 5.4, numptr is first assigned the address of num. The first
indirection references the same memory as that used by num. The value 5 is assigned. numptr is then
assigned a new address, the address of count. The next indirection on numptr now references the same
memory as that used by the variable count. The value 10 is assigned. An indirection on numptr will
now reference the value 10.

LLIISSTTIINNGG 55..44
countadd.c

#include <stdio.h>

void main(void)
 {
 int num, count;
 int *numptr;

 numptr = #
 *numptr = 5;
 printf("num = %d,numptr = %p \n", num, numptr);
 numptr = &count;
 *numptr = 10;
 printf("count = %d,numptr = %p \n",count,numptr);
 printf("num = %d, count = %d, *numptr = %d \n",
 num, count, *numptr);
 }

Output of Listing 5.4:

 num = 5, numptr = 800
 count = 10, numptr = 600
 num = 5, count = 10, *numptr = 10

Addresses and Memory Maps

Pointers 5-11

The contents of any variable are changed by assigning a new value to that variable. The contents of an
integer variable are changed when an integer value is assigned to it. In the same way, the contents of a
pointer variable are changed when an address is assigned to it. There are many places from which to
obtain addresses. The most common source of an address is another variable. To understand how this
works, you will need a rough outline of how memory is organized and used by a program.
 Computer memory is a collection of bytes. Each byte has its own address. A pointer can
reference any one of these addresses. When a program is loaded into memory from a file, the program
is divided into segments. There are four major segments. The first segment is the set of program
instructions. This is the program itself. It is usually protected by your operating system. The memory
there cannot be referenced or changed. The second segment consists of memory reserved for global and
static variables. These are variables that are defined once and remain in existence for the entire run of
the program. The third segment is the free and unused portion of memory. Sometimes this is referred to
as the heap or allocated memory. This is memory that can be allocated and used during the run of the
program. The fourth and last segment is the stack. This is a dynamic part of memory where function
variables are defined and function call information is placed. This memory is constantly being used,
freed up, and used again in different ways. Figure 5.6 illustrates these four segments.
 Addresses can be obtained for all of these segments in many different ways. An address
operation can obtain the address of a variable, whether it is global or function-based, referencing
memory either in the stack or the data segments. An allocation function such as malloc can allocate
part of the unused free memory in the third segment. The function will then return the address of that
allocated memory. A function name represents the address of program instructions that make up the
function, referencing memory in the program segment. You can assign this address of a function to a
pointer to a function, as described in Chapter 6. Finally, a pointer cast operation can convert an integer
to an address, referencing memory in any of the segments. In this way, an integer can be used to
represent a global address, accessing any part of a computer's memory.

PROGRAM (instructions)
0

3

.

.

236
.

65535

65548
.

65552

.

HEAP (free memory)

 DATA (external variables)

STACK (variables)

Memory Addresses Segments in Memory

.

.

Figure 5.6. Memory map of program organization.

Addresses and Variables: The Address Operation &

When a variable is defined, it is given its own memory. The address of this memory can then be
assigned to a pointer. When a pointer is assigned the address of a variable, it will be able to access
memory that has been reserved for use by that variable. How, then, can a pointer obtain the address of
memory used for a particular variable? tion

Pointers 5-12

 The address operation is an expression whose result is the address of a variable. The address
operator is a unary operator represented by the ampersand, &. The address operator can take a variable
name as its operand. In this case, the address operation will result in the address of the memory used for
that variable.

 int num = 6;

534
num

6
&num

534

Figure 5.7. Address operation.

 In Figure 5.7, the address operation, &num, results in the address of the variable's memory.
However, an address is always an address of a type of object. In this case, the type associated with the
address is the same as the type of the variable. In Figure 5.8, the address operation, &num, returns an
address, 534, which is the address of an integer. This address can then be assigned to a pointer variable.
The pointer variable, in this example, must be a pointer to an integer. The type of the variable and the
data type of the pointer must be the same. In Figure 5.8, numptr is a pointer to an integer and num is an
integer.

534
num

6

&num

address and type
information

(int*) 534534

int *numptr

Figure 5.8. Address operation and pointer variable.

 In the next example, the address operation on the variable num, &num, results in an address that
is the address of the memory used by the variable num (534). This address, in turn, becomes the
assigned value in an assignment operation. The address resulting from the address operation on num is
assigned to the pointer variable numptr. As a result, numptr obtains the address of the variable num,
534. (Figure 5.10 later shows how this process is arranged in memory.) The pointer and the integer
variables are both variables located at addresses in memory. The pointer variable is assigned the
address of the integer variable. The indirection operation references the memory at that address.

 int num;
 int *numptr;

 numptr = #

 An indirection operation can reference the same memory used by a variable. In Figure 5.9, the
pointer numptr holds the address of the variable num. An indirection operation on numptr will
reference the same memory that num uses. There are now two ways to reference the memory at address
534: first, with the variable name num; and second, with an indirection on address in numptr.

Pointers 5-13

534
num

6

534
numptr

534 3

*numptr

300

num = 6;

*numptr = 3;

The memory at
534 is first set to
6, and then,
through an
indirection on
numptr , set to 3.

Figure 5.9. Indirection and assignments.

 In the numref.c program in Listing 5.5, numptr is assigned the address of num. Because of this,
the variable name num and the indirection on numptr can be used interchangeably. Both reference the
same memory. The printf statement prints out the same value for both num and *numptr because
both access exactly the same memory. That memory was originally set to 2 by the second assignment
expression using the variable name num. Then it was set to 5 by the third assignment expression using
an indirection on the pointer, *numptr. The operands in the multiplication operation are actually the
same. The first operand uses the variable name to reference the memory of num, and the second
operand uses an indirection operation to reference the memory of num, *numptr. The multiplication
operation is then 5 * 5, resulting in 25.

LLIISSTTIINNGG 55..55
numref.c
#include <stdio.h>

void main(void)
 {
 int num, sqnum;
 int *numptr;

 numptr = #

 num = 2;
 *numptr = 5;
 sqnum = num * *numptr;

 printf("num = %d,*numptr = %d \n", num, *numptr);
 printf("Square of num = %d \n", sqnum);
 }

Output of Listing 5.5:

 num = 5, *numptr = 5
 Square of num = 25

Pointers 5-14

0

Address Operation Pointer Indirection

534

534

5
num

numptr

int num;
int *numptr;

numptr = #
*numptr = 5;

534
numptr

numptr = &num *numptr = 5;

int num;
int *numptr;

numptr = #
*numptr = 5;

PROGRAM (instructions)

DATA (external variables)

HEAP (free memory)

STACK (variables)

.

.

.

.

.

.
0

534
num

numptr.

.

.

.

.

.

int num;
int *numptr;

numptr = #
*numptr = 5;

5

534534

num

Figure 5.10. Address and indirection operations in memory.

 It is just as easy to have more than one pointer variable set to the same variable's address. In the
varptrs.c program in Listing 5.6, both numptr and iptr are assigned the address of num. An
indirection on either numptr or iptr will access the same memory as that used by num. First, both
numptr and iptr are set to the address of num. An indirection on numptr changes the memory used
by num to 5. The next indirection on iptr changes num's memory again, this time to 10. The
multiplication operation works through two different pointers, numptr and iptr, but references the
same memory, that of num. Then values of num, the indirection on numptr, and the indirection on
iptr are printed out. Then the address of num and the addresses in the pointer variables numptr and
iptr are printed out. Notice that these addresses are all the same. The value of sqnum will be the
result of the multiplication operation 10 * 10 - 100.

Pointers 5-15

LLIISSTTIINNGG 55..66
varptrs.c

#include <stdio.h>

void main(void)
 {
 int num, sqnum;
 int *numptr;
 int * iptr;

 numptr = #
 iptr = #

 *numptr = 5;
 *iptr = 10;
 sqnum = *iptr * *numptr;

 printf("num = %d,*numptr = %d,*iptr = %d \n",
 num, *numptr, *iptr);
 printf("&num = %p,numptr = %p,iptr = %p\n",
 &num, numptr, iptr);
 printf("Square of num = %d \n", sqnum);
 }

Output of Listing 5.6:

 num = 10, *numptr = 10, *iptr = 10
 &num = 800, numptr = 800, iptr = 800
 Square of num = 100

 An error will occur if a programmer were to forget to type in the address operator, &, when the
address of a variable is called for. This is a simple mistake that is very easy to make. In the next
example, the programmer has left out the & before the variable num in the assignment operation. The
value of the variable num is assigned to numptr, not the address of num. numptr ends up with the
address 6, instead of the address 534, the address of num. Some compilers may balk at this assignment.
Others may simply convert the integer to a pointer and make the assignment, issuing only a warning.
Figure 5.11 show the result of a pointer being assigned the value of a variable instead of its address.

 int num;
 float *numptr;

 num = 3;
 numptr = num; /* should be: numptr = &num */

534
num

6

int *numptr

6

Figure 5.11. Pointer with value of variable instead of address.

Pointers 5-16

Addresses and Allocated Memory: malloc

A program can call a function to cut out and set aside parts of the unused free memory in the heap
segment for use by pointers. You can then use a pointer to access this memory. In this way, parts of this
unused memory can be allocated and used as if they were variables.
 For this free memory to be usable, it must first be allocated. The allocation function malloc
allocates parts of this unused memory. malloc takes an argument that is the number of bytes it is to
allocate. The number of bytes depends on the type of variable those bytes are to be used for. Types are
of different sizes and vary from system to system. A common configuration is int = 2 bytes, float = 4
bytes, char = 1 byte. The programmer must make sure that there are enough bytes allocated for the type
of object needed. In the next example, malloc has set aside 2 bytes (the usual size for an integer) for
the program's use.

 malloc(2);

 However, on some systems an integer may be 4 bytes. How can you make sure what the actual
size of a variable is? The sizeof operator does this automatically for you. The sizeof operator can be
applied either to the names of objects or to types. When it is applied to types, the type must be enclosed
in parentheses. The operation sizeof(int) gives the correct size of an integer in bytes for your
system.
 In Figure 5.12, the result of the sizeof operation is used as the argument for malloc. The sizeof
operation will be performed first, resulting in the number of bytes for an integer. Assuming that the size
of an integer is 2 bytes, malloc has then set aside 2 bytes for the program's use.

 malloc(sizeof(int));

239238
malloc(sizeof(int))

238

Program segment Heap: free memory

Figure 5.12. malloc function.

 malloc returns to the program an address of the first byte of all the bytes set aside. An address
is always an address of a type of object. However, malloc does not know for what type of object the
memory is allocated. It only receives an integer value that is the number of bytes to be allocated. The
address it returns is a generic address whose type is specified by a generic pointer type. In C, a generic
pointer is a pointer to void. The address returned from malloc is an address of an unknown type of
object, a void object. An address whose type is a pointer to void can be assigned to any pointer variable
of any type, with no conversions or casts required.
 The address that malloc returns can then be assigned to a pointer variable. In Figure 5.13, the
address returned by malloc is assigned to numptr. For the sake of this example, the address consists
of the address location 238, and it is cast to the address of an integer. To hold this address, a pointer
variable with a pointer type of int is needed.

Pointers 5-17

 int *numptr;

 numptr = malloc(sizeof(int));

239238

malloc(sizeof(int))

(char*) 238(int*) 238
(int*) int *numptr

238

Figure 5.13. malloc and pointer variable.

 Notice that numptr is a pointer variable. As a variable, it resides in the stack segment.
However, its contents consist of the address 238. The address 238 is in the heap segment. A connection
has been made between a pointer variable in the stack segment and memory in heap segment. The
pointer holds the address of the allocated memory. It is through the pointer variable that your program
can use that allocated memory. In the allocptr.c program in Listing 5.7, numptr obtains its address
from malloc. costptr obtains its address from an address operation on cost. Their addresses, being
from different segments, will be very different. Figure 5.14 illustrates how memory is allocated by
malloc and its address assigned to numptr.

LLIISSTTIINNGG 55..77
allocptr.c

#include <stdio.h>
#include <stdlib.h>

void main(void)
 {
 float cost = 7.25;
 float *costptr;
 int *numptr;

 numptr = (int *) malloc(sizeof(int));
 *numptr = 5;
 costptr = &cost;

 printf("*numptr = %d, numptr=%p\n",*numptr,numptr);
 printf("cost = %f,costptr = %p \n", cost, costptr);
 free(numptr);
 }

Output of Listing 5.7:

 *numptr = 5, numptr = 65000
 cost = 7.25, costptr = 700

Pointers 5-18

PROGRAM 0

238

65535
65552

.

.

.

.

.

HEAP

Dynamic Allocation and Pointer

numtptr

numptr = malloc(sizeof(int));

malloc(sizeof(int))

numptr

numptr = malloc(sizeof(int));

238

238

STACK

.

.

Figure 5.14. Dynamic allocation of memory and assignment of address to declared
variable.

 An indirection operation on numptr can then reference the memory at 238 as an integer
variable. In Figure 5.15, the memory at 238 was referenced as an integer variable and assigned the
value 3.

 *numptr = 3;

 The memory that has been obtained from the heap has not been designated for any other use, as
was the memory used for variables. In a sense, what has happened here is a kind of simulation of a
variable declaration. A variable declaration designates memory and then uses type and address
information to reference that memory. The same thing happens in this situation, using only a pointer.
malloc designates the memory, and the pointer holds the address and type information with which to
reference that memory. An indirection on that pointer will reference that memory as an object. In the
program in Listing 5.7, an indirection on numptr references an integer object, even though no integer
object has been declared. The memory at the address held by numptr is treated as the memory of an
integer object.

PROGRAM 0
.
.
.

238

65535
65552

.

.

.

.

.

.

HEAP

numtptr 238STACK

3

numptr

*numptr

*numptr = 3;

*numptr = 3;

Indirection with Allocated Memory

Figure 5.15. Indirection on allocated memory using a pointer variable.

Pointers 5-19

 The memory that malloc allocated is reserved and cannot be reallocated until it is freed. The
function free will free allocated memory. In Listing 5.7, the function free is called with the pointer
numptr to free the memory at the address held by numptr. That memory could then be reallocated in
a subsequent call to malloc.
 The function declarations for malloc and free are held in a header file called stdlib.h. This file
needs to be included in any program that uses malloc and free. To do this, you have to place a
preprocessor include command for stdlib.h at the head of your program, just as you did for the stdio.h
file: #include <stdlib.h>.

Addresses and Global Memory: Integer Conversions
Addresses are equivalent to unsigned integer values. For example, in a computer with 64,000 bytes of
memory, each byte will be referenced by its own address. The 1000th byte will be referenced by the
number 1000. However, an address in C is never represented as simply an address. An address can
only be represented as an address of a type of object. In other words, an address can only be represented
as a pointer. In this sense, an address cannot be written as an integer. It is possible, however, to take an
integer and convert it to a pointer. In this case, the integer becomes an address of a type of object. This
conversion is effected with a cast.
 The type in such a cast operation is a pointer to an object. The cast for a pointer to an integer is
(int*). The type in this cast is literally the type used in the declaration of a pointer to an integer-the
keyword int and the asterisk symbol: int*.
 In the next example, the address resulting from the cast of the integer is assigned to a pointer
variable. The pointer variable then uses the address to reference the memory at address 143. An
attempt to assign the integer 143 directly to a pointer variable without using a cast may or may not
succeed. Some compilers may assume an implied conversion and proceed with the assignment, giving
only a warning. However, an attempt to use the integer 143 directly in an indirection operation, without
first casting it as a pointer, is invalid.

void main(void)
 {
 int *ptr;

 ptr = (int *) 143;
 *ptr = 5;
 }

 In next example, a preprocessor define directive is used to define a symbolic constant for the
pointer conversion. This makes for a clearer style. The preprocessor will replace the symbolic constant
IPTR with the replacement string (int*) 143 before the program is compiled. Symbolic constants
provide a way to easily represent global addresses in your program.

#define IPTR (int*) 143

int main(void)
 {
 int *ptr;

 ptr = IPTR;
 *ptr = 5;
 }

Pointers 5-20

 There is no restriction on the indirection operation in regard to memory. It may use the same
memory a variable uses. It may use memory allocated by special allocation functions. It may even use
memory that has not been allocated at all. In this respect, an indirection operation can use an address to
access memory located anywhere. It can be used to access memory that has been reserved for other
variables, the program itself, or even, in some cases, the operating system.
 This pointer conversion of an integer constant is as close as C comes to an explicit pointer
constant. Integer values have corresponding integer constants. Pointer values do not. Though,
technically, an address is equivalent to an integer, an address is always an address of a type of object,
never just a bare address. To use an integer as an address, you first need to convert it to a pointer.

Addresses as Pointer Values: Pointer Expressions

You will find that the term "pointer" is used in several different ways. A pointer is defined as a variable
that holds the address of another variable. At the same time, the term pointer is also used to refer to the
address itself. A closer look at the pointer type may be helpful in clearing up this confusion. A pointer
type consists of a data type and the pointer type specifier, the asterisk. The pointer type of an integer
pointer is int*. The asterisk is the actual pointer specifier. The data type is the type of object the
pointer points to. A pointer type always consists of both the pointer specifier (the asterisk) and the data
type (the type of object it points to). A pointer is always a pointer to a type of object.
 A pointer type is used to declare pointer variables. As such, pointer variables are referred to as
pointers. However, there are expressions that result in addresses. The type of such an address is that of
a pointer type. An address is not an integer, nor is there any special address type. Since this address's
type is a pointer type, an address can also be referred to as a pointer value. It is an address of a type of
object. This pointer value has not only address information, but also type information. This means that
the address resulting from a pointer expression has the information with which an object can be
referenced. Such an address can be used to locate memory, and the address's pointer data type can be
used to interpret that memory. An address with a pointer type, a pointer value, bears both address and
type information. The indirection operation can be performed directly on it. The indirection operation
is not restricted to pointer variables. It operates on any pointer value, whether that address is held in a
pointer variable or is the result of a pointer expression.
 The notion of a pointer expression is new. A pointer expression is an expression that results in
an address. The address operation is a pointer expression whose result is a pointer value: an address of
a variable. The malloc function call is a pointer expression that results in a pointer value: an address of
allocated memory. A cast operation on an integer is a pointer expression whose result is a pointer value:
an address designated by the integer value and cast to a pointer type. All of these addresses are pointer
values that have pointer types through which they can reference specific types of objects.
 The indirection operation can work directly on these addresses. In the next example, there are
three different indirections directly on addresses. In the first case, the address operation on num results
in the address of num. An indirection on that address references an integer at num's memory. The value
5 is assigned to it.
 In the second case, the function call to malloc results in an address, which is then cast to an
integer address. An indirection on this address references the memory at that address as an integer. The
value 5 is also assigned to it.
 In the third example, a cast operation on the integer 143 results in an address of a float. The
indirection operation references the memory at address 143 as a float variable. The value 7.25 is
assigned to it.

 *(&num) = 5;

Pointers 5-21

 ((int) malloc(sizeof(int))) = 5;
 ((float)143) = 7.25;

 This cast operation can also be written using a define command like that in the previous
example.

 #define FPTR (float *) 143

 *(FPTR) = 5;

 There are other kinds of pointer expressions, most notably those used to manage arrays. The
basic concept, however, is the same. The pointer expression results in an address that can then be used
in an indirection operation to reference an object.

Chapter Summary: Pointers

Pointer variables hold the addresses of objects. These addresses can be used to reference an object. A
pointer variable is declared with a data type and a pointer type specifier, the asterisk. Pointers are
declared to reference one data type. One can speak of different types of pointers. A pointer to an
integer will reference only integers. A pointer to a float can only reference floats.
 An address is always an address of a type of object. It holds not only location information, but
also type information. The address of a variable is obtained with the address operation. This address
can then be assigned to a pointer variable. An indirection operation can then use this address to
reference the variable. An indirection operation on a pointer that holds the address of a variable is just
as valid a reference to that variable as the variable's own name. Such an indirection operation can be
used anywhere a variable's name can be used, even in an assignment operation.
 Addresses can be obtained in several different ways. An address can be obtained from a
variable using the address operation. An address can also be obtained from free memory using the
malloc function. An address can be obtained by converting an integer to an address with a cast
operation.
 An address is an address of a type of object, not simply a numeric location. An address holds
both type and location information. For this reason, the indirection operation works on any address,
whether it is held in a pointer variable or is the result of some operation that results in an address. In this
sense, an address can be thought of as a pointer itself.

TTAABBLLEE 55..11 PPooiinntteerrss aanndd AAddddrreesssseess

 Pointer Declaration type * pointer name ;

 int *numptr;

 float *costptr;

 Address Operation &variable

 numptr = #

 *(&num) = 5;

Pointers 5-22

 Allocated Memory (type *) malloc(sizeof(type))

 numptr = (int*) malloc (sizeof(int));

 Integer Conversion (type *) integer

 numptr = (float *) 143;

 ((float) 143) = 7.25;

Exercises

1. Modify the following program by adding more variables and pointers to variables. Assign the
address of each variable to a pointer. Then use indirection on the pointer in assignment statements.
Print out both pointer indirections and addresses in pointers. Print out variables and addresses of
variables.

#include <stdio.h>

void main(void)
 {
 int num;
 int *numptr;

 numptr = #
 *numptr = (3 * 5) / 2;

 printf("Indirection = %d, Address = %p\n ",
 *numptr, numptr);
 printf("Num= %d, Num Address= %p\n ",num,&num);
 }

2. Modify the following program by adding pointers of different types. Assign values and print out
their addresses. Don't forget to use indirection when you have to.

#include <stdio.h>
#include <stdlib.h>

int main(void)
 {
 int *numptr;

 numptr = malloc(sizeof(int));

 *numptr = (3 * 5) / 2;
 printf("Numptr Indirection = %d \n", *numptr);
 printf("Num Address = %p\n ", numptr);
 return 0;
 }

Pointers 5-23

	5. Pointers
	Pointers and Object References
	Pointers, Addresses, and Variables
	Indirection Operation
	Addresses and Memory Maps
	Addresses and Variables: The Address Operation &
	Addresses and Allocated Memory: malloc
	Addresses and Global Memory: Integer Conversions
	Addresses as Pointer Values: Pointer Expressions
	Chapter Summary: Pointers
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /ZWAdobeF
]
 /NeverEmbed [true
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

